Microsoft lança modelo simplificado de linguagem de IA com promessa de ampliar mercado

0

Na linha da IA Generativa, a Microsoft está desenvolvendo uma família de linguagens pequenas, que promete ser mais poderosa e disponível ao público: a Phi-3-mini. A plataforma mensura 3.8 bilhões de parâmetros, que performa melhor do que modelos duas vezes maiores, segundo a empresa.

A solução está disponível partir desta terça-feira, 23, no catálogo do Microsoft Azure AI Model no Hugging Face, uma plataforma de modelos de aprendizagem de máquina, como o Ollama, um framework mais leve para rodar em máquinas locais.

A Microsoft também anuncia modelos adicionais da família Phi-3 que estão por vir para oferecer mais opções de custo e qualidade. O Phi-3-small (7 bilhões de parâmetros) e o Phi-3-medium (14 bilhões de parâmetros) estarão disponíveis, em breve, no catálogo do Azure AI Model e em outros "jardins" de modelos.

Os pequenos modelos de linguagem são projetados para ter bom desempenho em tarefas mais simples, sendo mais acessíveis e fáceis de usar, especialmente para organizações com recursos limitados. Eles podem, ainda, ser mais facilmente ajustados para atender a necessidades específicas.

"O que vamos começar a ver não é uma mudança de grande para pequeno, mas uma mudança de uma categoria única de modelos para um portfólio de modelos onde os clientes têm a capacidade de tomar uma decisão sobre a qual é o melhor modelo para o seu cenário", disse Sonali Yadav, gerente de produto principal para IA Generativa na Microsoft.

"Alguns clientes podem precisar apenas de pequenos modelos, alguns precisarão de modelos grandes e muitos vão querer combinar ambos de várias maneiras", disse Luis Vargas, vice-presidente de IA na Microsoft.

Escolher o modelo de linguagem certo depende das necessidades específicas de uma organização, da complexidade da tarefa e dos recursos disponíveis. Pequenos modelos de linguagem são mais adequados para organizações que procuram construir aplicações que podem ser executadas localmente em um dispositivo (em oposição à nuvem) e onde uma tarefa não requer raciocínio extenso ou nos quais é necessária uma resposta rápida.

Enquanto grandes modelos de linguagem são mais adequados para aplicações que precisam de orquestração de tarefas complexas e envolvem raciocínio avançado, análise de dados e compreensão do contexto, os pequenos modelos de linguagem oferecem soluções potenciais para indústrias regulamentadas e setores que encontram situações em que precisam de resultados de alta qualidade, mas desejam manter os dados em suas próprias instalações.

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.