Uso de IA no autoatendimento e sua relação com o ROI

0

As empresas, hoje em dia, têm clientes que buscam, cada vez mais, soluções rápidas, fáceis e confiáveis. Porém, muitos canais de autoatendimento fornecidos pelas organizações não atendem a essas expectativas. Uma pesquisa realizada pela Gartner apontou que, embora 70% dos clientes utilizem canais de autoatendimento em algum momento de sua jornada de atendimento, apenas 9% conseguem resolver totalmente seus problemas por meio dessas opções. Isso, muitas vezes, os leva a entrar em contato com um agente, anulando assim o propósito da experiência de autoatendimento.

Esta lacuna entre as expectativas do cliente e a experiência real com canais de autoatendimento pode prejudicar significativamente a reputação de uma organização e as taxas de retenção de clientes. Modelos eficazes de autoatendimento não apenas melhoram a experiência e a satisfação do cliente, mas também levam a economias significativas de custos e eficiências operacionais, ao reduzir drasticamente o volume de chamadas para centros de atendimento ao cliente, aumentar as taxas de desvio e melhorar a contenção do autoatendimento, e aumentar os tempos de resolução no primeiro contato, ajudando as organizações a resolverem problemas rapidamente. Além disso, fornecem aos clientes a autonomia, velocidade e personalização que desejam para soluções rápidas e eficazes, adaptadas às suas necessidades.

Não importa o quão bem-sucedida uma empresa possa ser, ela deve continuar a inovar, adaptar-se e ouvir os seus clientes, a fim de melhorar e personalizar a experiência do cliente. Enquanto 81% das marcas acreditam que compreendem profundamente os seus clientes, apenas 46% dos clientes globais concordam com isso, destacando a necessidade de melhorar as experiências dos clientes. Além disso, 64% dos consumidores dizem que abandonariam uma marca se a sua experiência não fosse personalizada (Relatório de Engajamento do Cliente 2024).

Em um cenário competitivo, reduzir a distância entre as expectativas dos clientes e a realidade quando se trata de canais de autoatendimento é importante para o sucesso das empresas. O fracasso em atender às expectativas dos clientes pode ter consequências terríveis. Por isso, inúmeras empresas estão dando alta prioridade à eliminação de pontos de atrito e à abordagem proativa das preocupações dos clientes – e a inteligência artificial (IA), combinada com dados de clientes em tempo real, pode ser a chave para o seu sucesso.

De acordo com uma pesquisa recente da BBC, os líderes empresariais de todo o mundo reconhecem os benefícios da IA, mas admitem que suas organizações não estão preparadas para adotá-la porque ainda não definiram uma estratégia com a qual se sintam confortáveis ou que compreendam bem.

Incorporar ferramentas de IA nas estratégias de atendimento ao cliente tornou-se essencial para empresas que buscam melhorar a experiência do cliente. A IA pode analisar grandes volumes de dados de clientes em tempo real, o que ajuda os agentes de atendimento a personalizarem as interações sem ficarem sobrecarregados com informações. Recursos de autoatendimento alimentados por IA, como chatbots e assistentes virtuais, podem lidar com consultas de rotina, dando aos agentes humanos mais tempo para resolver problemas complexos.

Além disso, a IA pode fornecer aos agentes resumos de interações anteriores com os clientes, permitindo-lhes compreender e resolver rapidamente o problema em questão, reduzindo a necessidade de repetição e melhorando a experiência do cliente. Isto não só melhora a velocidade e a precisão do serviço, mas também garante que o envolvimento seja relevante e individualizado.

Ao desenvolver uma estratégia de software de unidade de resposta audível (URA) acelerada por IA, as empresas também podem melhorar a eficiência do contact center, automatizando consultas e tarefas comuns, além de encaminhar conversas mais complexas para o conjunto de habilidades de agente apropriado. Na verdade, melhorar as taxas de contenção de URA em 5 a 20 por cento e melhorar as taxas de autenticação em 15 a 25 por cento pode reduzir os custos totais do call center em 10 a 30 por cento em apenas três a seis meses, de acordo com a McKinsey.

Também pode levar a um aumento na eficiência operacional. Com uma melhor compreensão do cliente usando IA conversacional e compreensão de linguagem natural (NLU), os clientes podem desfrutar de conversas semelhantes às humanas com agentes virtuais, reduzindo o tempo de resolução ao compreender a intenção do cliente.

O autoatendimento baseado em IA também pode ajudar a melhorar a largura de banda dos agentes, automatizando perguntas frequentes comuns de clientes que frequentemente obstruem as filas do contact center. Também pode levar à melhoria contínua dos agentes, reunindo dados proprietários de chamadas, usando ações históricas para prever as necessidades do cliente e aprimorando a jornada da URA de forma iterativa.

É de suma importância transformar as estratégias modernas de atendimento ao cliente, fornecendo um conjunto integrado de soluções que orquestram interações perfeitas em todos os canais. As empresas podem melhorar a experiência do cliente projetando jornadas do cliente que começam com um autoatendimento intuitivo e escalam até a resolução de problemas complexos com agentes ativos. Os agentes obtêm acesso a dados e contexto em tempo real, permitindo-lhes oferecer um serviço que não é apenas eficiente, mas também centrado no cliente.

Assim, é possível otimizar a IA para as empresas, aproveitando suas vantagens. Isso ajuda as empresas a se tornarem não apenas conscientes do cliente, mas também focadas neles, levando a um melhor envolvimento e ROI.

Vanessa Thompson, vice-presidente de marketing para produtos de comunicações da Twilio.

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.