Integração de dados e DataOps: como extrair mais benefícios na gestão de informações trafegadas

0

A integração de dados envolve a combinação de diferentes fontes, como bancos de dados, sistemas legados, aplicativos, nuvem e até mesmo fontes externas para criar um repositório coeso e consistente de informações. Esse processo pode incluir a extração, transformação e carga (ETL) dos dados, além de garantir sua qualidade, sua consistência e a sua acessibilidade.

A integração de dados eficiente e o gerenciamento adequado dos pipelines de dados são fundamentais para garantir que as empresas tenham acesso a informações de qualidade, em tempo hábil e em toda a organização. Para tanto, quais conceitos e fundamentos relacionados ao DataOps que devem ser praticados em uma organização?

Trata-se de um processo fundamental para agrupar informações de várias fontes e sistemas, permitindo uma visão unificada e abrangente dos dados considerando sua importância e os desafios comuns enfrentados.

Importante destacar que tal iniciativa desempenha um papel crítico nas operações de uma organização. Ao ter acesso a uma visão unificada dos dados, as empresas podem obter insights mais profundos, tomar decisões com bases mais sólidas e fornecer uma melhor experiência ao cliente. Além disso, a integração de dados permite melhorar a eficiência operacional, identificar oportunidades de negócios e impulsionar a inovação.

Tipos desta integração:

  • Integração por lotes (batch): onde os dados são coletados e processados em lotes, geralmente durante períodos específicos, como diariamente ou semanalmente. É um método eficiente para lidar com grandes volumes de dados, mas pode ter uma latência maior em comparação com outros tipos de integração.
  • Integração em tempo real: Aqui, os dados são movidos e processados em tempo real, permitindo uma resposta imediata às mudanças nos dados. É ideal para cenários em que a atualização em tempo real é crítica, como transações financeiras, monitoramento de sensores ou rastreamento de remessas.
  • Integração federada: os dados permanecem em suas fontes originais e são acessados de forma federada, ou seja, uma camada de integração permite consultar e combinar os dados de várias fontes sem a necessidade de replicação. É útil quando os dados estão distribuídos em diferentes sistemas e não é viável ou desejável consolidá-los em um único repositório.

Os dados podem ser provenientes de diferentes sistemas e fontes, cada um com seu próprio formato e estrutura. Isso requer esforços para mapear e transformar os dados em um formato padronizado. A garantia da qualidade e consistência dos dados é fundamental para obter insights precisos e confiáveis. Dados inconsistentes, duplicados ou incompletos podem levar a decisões errôneas ou análises incorretas.

A integração de dados requer cuidados especiais para garantir a segurança e a privacidade dos dados sensíveis. É necessário implementar medidas adequadas de proteção e conformidade com regulamentações, como o GDPR. À medida que os volumes de dados aumentam, a integração de dados deve ser capaz de lidar com a escalabilidade e garantir o desempenho adequado, sem comprometer a eficiência das operações.

O primeiro passo na integração de dados é identificar as fontes de dados relevantes para o negócio. Isso pode incluir bancos de dados internos, sistemas legados, aplicativos, serviços em nuvem, feeds de dados externos, entre outros fatores. É essencial ter uma visão abrangente das fontes de dados disponíveis e entender quais dados são necessários para atender aos objetivos do seu projeto.

Com as fontes de dados identificadas, é necessário selecionar as abordagens de integração adequadas. Existem várias técnicas e tecnologias disponíveis, e a escolha dependerá dos requisitos específicos do projeto. Algumas abordagens comuns incluem:

  • ETL (Extração, Transformação e Carga): é uma abordagem tradicional em que os dados são extraídos de suas fontes originais, transformados para atender a requisitos específicos e, em seguida, carregados em um novo sistema ou repositório.
  • ELT (Extração, Carga e Transformação): diferentemente do ETL, o ELT envolve a extração e a carga dos dados primeiro, seguidas pela transformação dentro do sistema de destino. Essa abordagem é frequentemente usada em casos em que a capacidade de processamento do sistema de destino é alta.
  • Streaming: aqui, envolve o processamento contínuo de dados em tempo real à medida que são gerados. É ideal para cenários em que a latência é crítica e a análise de dados em tempo real é necessária.

O design adequado dos pipelines de dados é fundamental para garantir uma integração eficiente. Para tanto, é preciso seguir o passo a passo abaixo:

  • Definir uma arquitetura de integração de dados escalável e flexível;
  • Adotar padrões de design para garantir a reutilização e modularidade dos componentes;
  • Implementar transformações e validações de dados para garantir a qualidade e a consistência;
  • Considerar a segurança dos dados ao projetar os pipelines.

Muitas organizações têm uma variedade de sistemas e tecnologias em seus ambientes de TI. A integração de dados em ambientes heterogêneos pode ser desafiadora, mas é crucial para obter uma visão unificada dos dados. É necessário considerar aspectos como integração de sistemas legados, bancos de dados, serviços em nuvem, APIs e tecnologias de integração específicas. A integração de dados não é um processo único, mas contínuo.

É importante estabelecer um plano para monitorar e gerenciar os pipelines de dados. Isso inclui o monitoramento regular para garantir que os dados estejam sendo integrados corretamente, a detecção e o tratamento de erros e a implementação de mecanismos de recuperação em caso de falhas.

Entre os benefícios da implementação do DataOps estão maior eficiência, maior colaboração, entrega mais rápida de dados, maior qualidade de dados e maior agilidade e flexibilidade.

Ao implementar o DataOps, as organizações podem experimentar ganhos significativos, como maior eficiência operacional, entrega mais rápida de dados, melhoria da qualidade dos dados, estímulo à inovação e ao crescimento. A automação, o monitoramento contínuo e a cultura de colaboração são elementos fundamentais para o sucesso do DataOps. No entanto, é importante reconhecer que a implementação do DataOps não é um processo único. É uma jornada contínua de aprendizado, ajustes e melhorias. Cada organização deve adaptar o DataOps às suas necessidades específicas, considerando sua cultura, recursos e objetivos.

À medida que avançamos rumo a uma era cada vez mais orientada por dados, o DataOps desempenhará um papel central no sucesso das empresas. Ao adotar essa abordagem ágil e centrada nos dados, as organizações estarão preparadas para enfrentar os desafios e explorar as oportunidades do mundo de dados em constante evolução. Estamos diante de uma revolução de dados e o DataOps é o elemento-chave para desbloquear todo o potencial que eles têm a oferecer.

Fabio Iamada, vice-presidente Financeiro e de Marketing da Orys.

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.