Inteligência Artificial: A batalha entre dados e algoritmos

0

Não há dúvida de que a Inteligência Artificial é um dos pontos tecnológicos mais efervescentes. Segundo o estudo do Gartner "O valor comercial da inteligência artificial em todo o mundo, 2017-2025", é que o volume de soluções de negócios empresariais baseadas em plataformas de Inteligência Artificial crescerá drasticamente em todo o mundo, com um aumento de 70%, em 2018 em relação ao ano anterior. E isso pode triplicar em 2022, quando o negócio deve valer US$ 3,900 bilhões.

A explosão da Inteligência Artificial tem transformado profundamente a sociedade moderna, impulsionado pela capacidade computacional cada vez maior e as quantidades continuamente crescentes de dados e informações disponíveis hoje. Isso afetará todos os aspectos de nossas vidas e será uma das tecnologias mais disruptivas dos próximos anos.

Para mim, é claro que, como diretor de uma empresa voltada para auxiliar seus clientes na transformação digital, a adoção de soluções utilizando Inteligência Artificial é a base das atividades diárias e dos motivos de debate com colegas e clientes. Hoje, lendo a imprensa especializada e fóruns de discussão na Internet, parece haver uma batalha entre dados e algoritmos, para suportar os melhores aplicativos baseados em IA. É possível ler artigos que parecem ser quase expressões de facções opostas; tendenciosa de acordo com a preferência de dados sobre algoritmos ou vice-versa.

O que caracteriza a Inteligência Artificial do ponto de vista tecnológico é o método/modelo de aprendizagem com o qual a inteligência se torna habilidosa em uma tarefa ou ação (daí a distinção entre os vários Machine Learning, Aprendizagem Profunda, etc). Portanto, dados quanto os algoritmos são necessários para o desenvolvimento de uma aplicação baseada em IA.

Existe realmente uma batalha entre dados e algoritmos?

Já faz muito tempo desde que deixei a Faculdade de Ciências Estatísticas em Bolonha (Itália), mas com todos os investimentos que estamos fazendo na empresa no campo de Machine Learning e Inteligência Artificial em geral, eu estou frequentemente envolvido nessas áreas em interessantes discussões de projetos com meus colegas, que lideram o departamento Digital, e felizmente são muito mais experientes do que eu.

Do meu ponto de vista, se é verdade que – como afirma Geraldo Salandra – "Inteligência Artificial é o foguete, mas os dados são o combustível", também é verdade e inegável que a IA é uma combinação de dados e algoritmos.

Não há dúvida de que sem combustível (ou seja, dados) você não vai a lugar algum, mas tenha em mente que também é verdade que a escolha do algoritmo correto pode compensar a má qualidade dos dados, e é igualmente certo que escolher um algoritmo errado pode empobrecer os efeitos de excelentes dados.

Devemos assumir que os dados são mais importantes que os algoritmos?

Eu não acho que é sempre assim. Eu entendo o valor fundamental da infraestrutura de dados e análise para alimentar os algoritmos de Inteligência Artificial.

Em nossa experiência cotidiana, "coleta e preparação de dados" são, de fato, as atividades que requerem mais tempo para o desenvolvimento de aplicações baseadas em Inteligência Artificial, comparadas com aquelas para a seleção e desenvolvimento de um modelo. É por isso que investimos muito para fornecer aos nossos clientes a melhor infraestrutura de dados para alimentar e treinar algoritmos.

Mas nos algoritmos é necessário um ótimo trabalho: ninguém pode dizer com certeza qual algoritmo terá o melhor desempenho sem antes ter tentado diferentes. Elaborar e comparar algoritmos e modelos para escolher os adequados é uma atividade crucial para definir o sucesso de uma solução de IA:

– Qual algoritmo devo usar?

– Quantas horas de treinamento de algoritmo tenho à minha disposição?

– Qual é o tipo, a qualidade e o tamanho dos dados disponíveis para mim?

A qualidade do conjunto de dados influenciará diretamente o sucesso do modelo preditivo. Com foco nos dados, é possível transformar um banco de dados ruim em um que vale a pena ser usado na aplicação da Inteligência Artificial, mas também é essencial escolher o algoritmo e modelo corretos que se ajustam aos dados disponíveis e que são consistentes com os dados dos objetivos de negócio.

Aqui estamos nós: o negócio. A palavra que muitas vezes falta nos artigos que li, onde a prioridade dos dados sobre os algoritmos é debatida ou vice-versa, são precisamente "negócios". A disponibilidade de uma grande quantidade de dados de boa qualidade e algoritmos relevantes permite melhores informações e aplicações; mas obter esse tipo de dados e algoritmos não é apenas uma questão técnica: habilidades empresariais profundas são necessárias para gerar valor significativo e aplicativos de inteligência artificial para empresas.

Dados e algoritmos não se opõem, mas são aliados em uma estratégia orientada para os negócios.

Filippo Di Cesare, CEO da Engineering do Brasil.

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.